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INTRODUCTION

These are a set of notes for the Summer 2019 HSSP linear algebra class. These
are work in progress, and the current form is just a sketch of how the course
might go (content could be removed or added depending on how it goes).



Linear Algebra Lecture 1

LECTURE 1: SO WHAT IS A VECTOR, ANYWAY?

VECTORS IN Rn

If you’ve taken a physics class, you might have seen the following definition
of a vector:
DEFINITION. A vector is a quantity having direction as well as magnitude.

This is good for giving some intuition about how you might interpret a vector,
but it’s a bit tricky to do anything with this without any extra structure. For
example, how will we add vectors? How would we describe functions that
take in vectors?

Let’s think about how we should add vectors. Let’s call our vectors u,v.

u

v

Their sum should look something like this, where we start v at the tail of u:

u + v

If we add in coordinate axes, we will get something like this:

x

y

u

v

u + v

What we get from this is that we can represent a vector as a pair (x, y). In
the picture above, this is u = (1, 1),v = (2, 0) and u + v = (3, 1). We can
formulate a general rule for adding vectors from this:

(x, y) + (x′, y′) = (x+ x′, y + y′).
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Linear Algebra Lecture 1

But this is only two dimensions. Can we do better? Yes we can.
DEFINITION. We will use R to denote the set of real numbers.

DEFINITION. (Rn) As a set, Rn consists of sets of n real numbers:

(v1, . . . , vn) ∈ Rn.

We have two main operations we can perform on these.

◦ Addition. If v = (v1, . . . , vn) and w = (w1, . . . , wn) then

v + w = (v1 + w1, . . . , vn + wn).

◦ Scalar multiplication. If v = (v1, . . . , vn), and c ∈ R, we define

cv = (cv1, . . . , cvn).

The example we did above was R2. The addition operation is what we did
by putting the other vector at the end of the first, and scalar multiplication
just makes a vector longer:

x

y

u

×2
x

y u

This is usually what people mean when they say ‘‘n-dimensional space”.
Don’t get intimidated by the fact that you can’t draw pictures anymore -
since we have the definition above, we still know how to work with vectors
even when it’s hard to visualize them. We can get our intuition from the R2

or R3 case.

Now that we know what vectors are, let’s talk about some of the things we
can do with them before we get to linear maps.

ORTHOGONAL VECTORS

First, we’ll give an intuitive definition of what it means for two vectors to be
orthogonal. I will assume you know what this means in R2.
DEFINITION. Given two vectors in Rn, there is a unique plane Π containing
both of them 1. In this plane, we say v and w are orthogonal they are
orthogonal in Π ' R2.

1Why? Describe the plane.
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Linear Algebra Lecture 1

What does this mean in R2 in terms of coordinates? If we let v = (v1, v2), w =
(w1, w2), we have following:
LEMMA. The vectors v, w ∈ R2 are orthogonal if and only if v1w1 + v2w2 = 0.

If we work it out in R3, we can see that the condition becomes v1w1 + v2w2 +
v3w3 = 0. So, we might guess the following:

v ⊥ w ⇐⇒
∑
i

viwi = 0.

We denote the sum
∑

i viwi as v · w. That would be really nice if it were true,
because then we wouldn’t have to bend our minds in Rn trying to figure out
whether or not two vectors are orthogonal.
REMARK. Note that u · (v + w) = u · v + u · w, and cv · w = c(v · w). Also,
w · v = v · w.

LEMMA. We have
v · w = |v| · |w| cos(θ),

where θ is the angle between the two vectors in the plane Π.

Proof. Given vectors v, w, if we place the start of the vector v − w at w then it
connects to v since w + (v − w) = v. Thus, we have formed a triangle. The
law of cosines tells us that

|v − w|2 = |v|2 + |w|2 − 2|v| · |w| cos θ.

From the Pythagorean theorem, note that

|v − w|2 = (v − w) · (v − w).

Using our remark, we have

(v − w) · (v − w) = (v · v)− 2(v · w) + (w · w)

= |v|2 + |w|2 − 2(v · w).

Comparing this with the law of cosines from before, we see that v · w =
|v| · |w| cos θ. �

THEOREM. Our conjecture was right! For nonzero vectors v, w, we have v ⊥ w if
and only if v · w = 0.

Proof. It’s easy with the lemma: we see that v ·w = 0 if and only if cos(θ) = 0.
This only happens for θ = ±π/2. �

EXAMPLE. Let n̂ be a unit vector, that is n̂·n̂ = 1. Set Πn̂ = {v ∈ Rn : v·n̂ = 0}.
This will be a hyperplane of dimension n − 1, and in fact all hyperplanes
arise this way.

This theorem is actually quite useful. It translates a geometric idea into an
algebraic one, which makes dealing with higher dimensions much easier.
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For this reason, many linear algebra books will actually have our theorem
as a definition. It is good to see the geometric meaning, but this probably
a good way to view it in general. The reason for this will become clearer
later, but the idea is that we want to eventually discard ideas from classical
geometry in favor of more algebraic ideas that allow us to more easily deal
with abstract vector spaces.

ABSTRACTING GEOMETRY

One thing the last part of the lecture demonstrated was that we can discard
geometric ideas in favor of algebraic ones, and this can actually be very
useful because it allows us to more easily make computations and check if
things are true. If you didn’t know about the dot product, would you have a
reasonable way to check if vectors are perpendicular in R2019?

We can do the same thing with the notion of a vector, and this is an incredibly
useful idea. First, let’s just do this over R.
DEFINITION (Vector space over R). A vector space V over R is a set of
vectors, such that the following hold for all u, v, w ∈ V :

◦ u+ v = v + u

◦ (u+ v) + w = u+ (v + w)

◦ There is a vector 0 so that v + 0 = 0 + v = v. This is provably unique.

◦ For any v, there is −v so v + (−v) = 0.

This tells us how to add vectors. We also need to know how to scale them.
Let r, s ∈ R. We have

◦ r(sv) = (rs)v

◦ (r + s)v = rv + sv

◦ 1v = v

There is a point to all of this, other than listing out seemingly obvious
statements. If we prove something about vector spaces over R algebraically,
we have only used these axioms. That means if we can find any set V that
satisfies these axioms, we immediately have all of the theorems we know
about vector spaces over R for V , even if we know very little about V other
than that these axioms hold. Let’s give some examples to demonstrate how
there can be spaces that are distinctly not geometric, but are vector spaces
over R:
EXAMPLE. Let V = f(x), where deg f(x) ≤ 2 and f has real coefficients. It’s
clear that if we add these functions the degree can’t increase, so we have
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closure. Scaling by real numbers also can’t increase degree. It is pretty easy
to verify all the axioms.

EXAMPLE. Consider C. Since R ⊂ C, we can multiply by real numbers.
Obviously we can add complex numbers - the axioms hold again. Thus, C is
a vector space over R. It is ‘two-dimensional’, in the sense that we can write
every element as a + bi for a, b ∈ R. Abstractly, we can treat it as R2 even
though it has more structure, which is where we get the picture of C as a
plane.

Similarly, Cn is a vector space over R.

EXAMPLE. Vector spaces don’t have to have finite dimension! Consider R[t],
the space of polynomials with real coefficients in a variable t. This is a vector
space over R, but is infinite dimensional. We mostly won’t treat examples
like this, because the theory of infinite dimensional vector spaces is tricky.

EXAMPLE. We can actually get even bigger vector spaces. Consider the
space

V = C∞(R)

of infinitely differentiable functions defined on R. Members include poly-
nomials, ex, sinx, cosx. Non-examples include lnx (not defined for x ≤ 0),
|x| (not differentiable at 0). An interesting example is |x|k+1, which is differ-
entiable k times but not k + 1 times. We then write |x|k+1 ∈ Ck(R). You can
again check the vector space axioms for R on these and you will find that
they hold, although it is now unclear how we could even write down an
arbitrary element. Despite this, linear algebra will still work here!

Hopefully these examples made the usefulness of this approach clear - in-
stead of restricting ourselves to boring old Rn, we can now talk about linear
algebra in spaces that are quite different but behave the same algebraically.
As you will see as this course progresses, all of the theorems we prove will
depend only on these algebraic axioms so we can apply everything we will
learn in each of these examples equally well.
DEFINITION. A subspace V ⊂ W is a subset of a vector space that is closed
under addition and scalar multiplication in W .

EXAMPLE. Some examples:

◦ R ⊂ R2.

◦ R ⊂ C, Q ⊂ Q(
√

2), etc.

◦ A plane through the origin in Rn.

◦ Πn̂.

◦ Ck(R) ⊂ Ck−1(R).
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LECTURE 2: LINEAR MAPS

From now on we will talk about vector spaces without explicit reference to
the field. If it helps, you can think about these all being over R but keep in
mind everything we do works over a general field.
DEFINITION. Let V,W be vector spaces over the same field. A linear map
V → W is a function

T : V → W

satisfying T (v+w) = T (v) +T (w) and T (cv) = cT (v). The set of linear maps
V → W is denoted Hom(V,W ).

Why this definition? We can write down several justifications.

◦ It’s structure preserving. If we can write v′, w′ ∈ W as T (v) =
v′, T (w) = w′, then we know how to add v′, w′: it is just T (v + w).
A similar result holds for scalars. Suppose we have a linear map T
which is bijective, so that we can write every w′ ∈ W as T (w). If we
relabel w′ as w, then the addition rules for w′, v′ are exactly the same
as those for w, v. That is, V,W are basically the same - we just give
the elements different names.

◦ A less abstract reason is that we want to look at maps that ‘‘stretch”
space uniformly. This is apparent when we look at linear maps in Rn,
where we can draw pictures.

EXAMPLE. Let’s write down some simple examples.

◦ Consider V = Rn. The map sending v 7→ 2v is a linear map.

◦ Consider R ⊂ C. We know C is a vector space over R. Multiplication
by any complex number satisfies the axioms for a linear map.

◦ Take V = R2. The map sending v to Rθv, where Rθv is v rotated by θ
is a linear map.

◦ Note that Hom(V,W ) itself is a vector space over R. The map T 7→
T ′(T ) is a linear map if T is a linear map.

◦ Linear maps tells us about local information of complicated functions.
If we have a function f(x1, x2, . . . , xn) around a point p ∈ Rn the
function will behave very similarly to T (v − p). To see this is a low-
dimensional case, consider the tangent line to a function f : R→ R.
If you’ve seen multivariable calculus, this is the Jacobian matrix.

In order to do explicit calculations in Rn, we has to pick coordinates of some
sort. How can we generalize this idea? Well, roughly what we want is to be
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able to pick a set of vectors {vi} so that every v ∈ V can be written uniquely
as a combination of these vectors. Specifically, we mean a linear combination:
DEFINITION. Let S = {v1, . . . , vn} ⊂ V be a set of distinct vectors. A linear
combination of vectors in S is a sum of the form

w =
∑
i

civi

where ci ∈ F.

We call a set of vectors {vi} spanning if every v ∈ V can be written as a linear
combination of {vi}. This is a great property, because of the following:
OBSERVATION. Suppose we have a linear map, and we know the values Tvi
for a spanning set {vi}. Since T (

∑
i civi) =

∑
i ciTvi by linearity, this allows

us to calculate the value of T at every point from a finite set of data.

It is for this reason that we want to understand better how spanning sets
of vectors work - this has great potential to let us easily describe what any
linear map does! Next, we need to deal with the uniqueness part. Intuitively,
this should have something to do with picking ‘‘independent” vectors for
each ‘‘dimension” of our vector space, since this is what we did in Rn.
DEFINITION. A set of vectors {vi} is linearly independent if the only way to
write 0 ∈ V as a linear combination of {vi} is to set all of the ci equal to 0.

In the case of Rn, we can see that linearly independent is something like
saying we don’t pick vectors from subspaces we already span, and being
spanning says that we have enough vectors to reach everything. We would
expect to be able to write everything uniquely, and this is in fact the case in
general.
THEOREM. Let {vi} ⊂ V be a set of vectors in V . If they are spanning and linearly
independent, then they are a basis. That is, we can write every element of V uniquely
as

v =
∑
i

civi.

Proof. First, we see that we can write every element of V as some linear
combination, by definition of spanning. If they are linearly independent, we
claim this makes the linear combination unique. Suppose we could write v
in two ways, Then we would have

v =
∑
i

civi =
∑
i

civi,

and subtracting we obtain

0 =
∑
i

(ci − ci)vi
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and by linear independence we get ci = ci, and hence the combination was
unique. �

We call a vector space finite dimensional if it is spanned by a finite set of
vectors. In this case, a finite basis will exist.
THEOREM. Let V be finite dimensional. Then V admits a finite basis.

Proof. Let {vi} be a finite spanning set of V . The idea is that we can remove
vectors until we get a basis of V . �

In this case, we have the following theorem that confirms our experience in
Rn holds in general:
THEOREM. Let {vi} be a finite basis for V . Then every basis of V has the same size.

Proof. Let {vi} be a basis of V consisting of n vectors. Let {wi} be a basis
consisting of m vectors.

Take {v1, . . . , vn}. We can write w1 =
∑

i≤n civi, and in particular we can
extract

vn =
1

cn

(
w1 −

∑
i≤n−1

civi

)
Hence, we can replace vn by w1 and our set remains spanning because we
can reach vn. Continue the process; eventually, we replace all of the vi
with elements of {wi}. Thus, n ≥ m. If we had m > n, we would have a
proper subset of {wi} that is spanning, and hence we would not get linear
independence.

Similarly, m ≥ n. Thus, m = n. �

This lets us make the following definition:
DEFINITION. Let V be finite dimensional. Then dimV is the size of any basis
of V .

We will only be talking about finite dimensional vector spaces here. Some
of the properties of vector spaces become more subtle when we go to the
infinite dimensional case.
DEFINITION. We call two vector spaces V,W isomorphic if there exists a
linear map T : V → W which has an inverse T−1 : W → V . We write V ' W .
To be an inverse, we need T−1T = TT−1 to be the identity.

REMARK. We call the linear map an isomorphism. An equivalent condition
is being bijective. To be bijective, a function is surjective and injective. A
surjective function f : X → Y has y = f(x) for each y ∈ Y for some x ∈ X -
it ‘hits everything’. An injective function has no repeat values: if f(x) = f(y),
then x = y.
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THEOREM. A vector space V of dimension n over R is isomorphic to Rn.

Proof. Let V have a basis {v1, . . . , vn}. Then define T to be the linear map
sending

T :
∑
i

civi 7→
∑
i

ciei

where ei = (0, . . . , 1, . . . , 0) with a 1 in the ith index, the canonical basis for
Rn. This has an easy inverse:

T−1 :
∑
i

ciei 7→
∑
i

civi.

Thus, V ' Rn. �

THEOREM. Let T : V → W be a bijective linear map. Then there is T−1 : W → V
so T−1T = TT−1 is the identity map, I . In other words, a bijective linear map is an
isomorphism.

Proof. If T sends v ∈ V to Tv = w ∈ W , we define T−1 so that it sends w 7→ v.
Clearly T−1T = TT−1 is the identity. We have

T−1(w + w′) = T−1(Tv + Tv′) = T−1T (v + v′),

then by definition this is sent to v + v′ = T−1w + T−1w′. Thus, T is linear.
We can also check that T−1(cw) = T−1(T (cv)) which is cv by definition, or
cT−1w. �
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LECTURE 3: LINEAR MAPS AS MATRICES

At this point, we have covered the basics of what vector spaces over R
actually look like. Although abstractly they are isomorphic to Rn, it is helpful
to keep in mind that the objects we describe using the vector space structure
don’t have to resemble Rn (as we saw with some previous examples).

One thing you might have about before is the idea of a matrix. It’s a very
similar idea to a linear map, but there is a subtle (but important!) difference
between the two.

Let T : V → W be a linear map. A matrix for T is an explicit representation
of T with respect to chosen bases for V and W . Suppose that V has a basis
{v1, . . . , vn} and W a basis {w1, . . . , wm}. Suppose that we know the values
Tv1, T v2, . . . , T vn. If we want to calculate Tv, we just write

Tv = T

(∑
j

cjvj

)
=
∑
j

cjTvj.

Just like our observation with spanning sets, we can calculate everything.
The advantage of a basis is that every element has a unique representation
in the basis, so it is no longer ambiguous which cj to pick.

We can go a step further: Tvj ∈ W , so it can be written as a sum Tvj =∑
i Tijwi. We can then describe Tv as

Tv =
∑
i,j

cjTijwi.

This tells us what element of W we get, in the basis we picked for W . As a
result, the n×m numbers Tij completely describe T .

This is where we get the ‘matrix’ notation. Basically, we write T like this:

T =

 | | . . . | |
Tv1 Tv2 . . . T vn−1 Tvn
| | . . . | |


In the columns, we write Tvj as a column vector with m entries in the basis
of W . The entry Tij then appears in row i and column j. The way to read
off what a linear map does from a matrix representation is simple: just look
at each column, and we can read off where each basis vector is sent. If we
know a vector’s representation in our basis as a linear combination, we just
do the same linear combination of the columns. The number of columns is
dimV (the input space) and the number of rows is dimW (the output space).

Explicitly, applying T to a vector ~c = (c1, . . . , cn) ∈ V , the ith entry of the
result is

∑
j cjTij or ~c · Ti, where Ti is the vector for row i in the matrix.
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This also lets us compose linear maps. Let’s specialize to T ∈ Hom(V, V ). If
we have A,B matrices of linear maps, then A ◦B has us apply B and then A.
This sends vi 7→ Bvi, or the ith column of B. Denote this Bi = (bi1, . . . , bin).
Applying A, we

ABvi = A(Bi) =
∑
j

(Bi · Aj)vj.

Thus, we can just take dot products of the ith column of B and the jth row
of A to get the entry in column i and row j of AB.
EXAMPLE. Let’s take our maps from before and write down matrices.

◦ Consider V = Rn. The map sending v 7→ v is a linear map, called I .
Its matrix is the following:

T =


1

1
. . .

1


◦ Consider V = Rn. The map sending v 7→ cv is a linear map, denoted
cI . Its matrix is the following:

cI =


c
c

. . .
c


◦ Consider R ⊂ C. We know C is a vector space over R. Multiplication

by any complex number satisfies the axioms for a linear map. We
have

a+ bi =

[
a −b
b a

]
.

◦ Take V = R2. The map sending v to Rθv, where Rθv is v rotated by θ
is a linear map. This is given by

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

REMARK. Note that all throughout this we have picked a specific basis for
both V,W . There are many matrix representations of a linear map, we just
pick a particular one:

T ∈ Hom(V,W ) 7→Matrix of T with respect to bases

Additionally, different linear maps might have the same numbers Tij in their
matrix representations but just be in different bases.
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However, the properties of the linear map itself should be independent of
the basis. Properties like ‘how much does it stretch?’ or ‘can I undo it?’
should be coordinate-free since they make no reference to coordinates, and
will be the same for many matrix representations of the linear map.

In terms of matrices, if A and B are the same linear map under different
bases we will be able to write A = PBP−1 for some matrix P . This is an
important point, so make sure to remember it!

LEMMA. Let A be an n× n matrix with an inverse. Then the columns of A form a
basis for V = Rn.

Proof. First, we show that they are spanning. Let Ai ∈ V denote the ith
column (going from left to right). Take v ∈ Rn, and consider w = A−1v.
Then if w =

∑
iwiei,

v = Aw = wiAi.

Hence, we can write v in terms of the vectors Ai. Now suppose that there
exists a nonzero linear combination of the Ai that is zero - letting the coeffi-
cients be c1, . . . , cn and setting ~c = (c1, . . . , cn), there is a nonzero vector ~c so
A~c = ~0. Applying A−1, ~c = ~0, a contradiction. �

OBSERVATION. Matrix multiplication is not actually commutative - that
is, AB 6= BA in general. To see this, consider two linear maps: A sends
(x, y) 7→ (x+ 1, y) and the other, B, sends (x, y) 7→ (2x, 2y). Then AB = (2x+
1, 2y), BA = (2x+ 2, 2y). These are different! However, it is associative. We
have ABC = (AB)C = A(BC) - this is because as linear maps, matrices are
functions and multiply via composition. Function composition is associative.

LEMMA. Inverses for a matrix A are unique.

Proof. Suppose there are B,C so that AB = BA = I, AC = CA = I . Then

ABC = (AB)C = (BA)C = B(Ac) = B.

But AB = I , so ABC = (AB)C = C. Hence, B = C. �
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LECTURE 4: IMAGE AND KERNEL

Last lecture, we saw how the matrix of a linear map allows us to be able to
effectively compute what a linear map does to V . In this lecture, we will
look at two objects associated to a linear map (not a specific matrix) known
as the image and kernel.
DEFINITION. Let T : V → W be a linear map. The image is the set T (V ) ⊂
W . We denote this by imT .

DEFINITION. Let T : V → W be a linear map. The kernel is the set K ⊂ V of
vectors v so T (v) = 0 ∈ W . We denote this by kerT .

LEMMA. Both imT, kerT are subspaces of W and V respectively.

Proof. Just check the axioms and use linearity! �

Intuitively, the kernel measures how ‘‘degenerate” T is by seeing how in-
formation about V we lose by sending things to zero. The image acts as the
opposite of the kernel, giving us information about how much content T pre-
serves from V . In the case of an isomorphism, the kernel will be trivial and
the image will be W so we lose no information and retain all the information
from V .
EXAMPLE. Consider a map π : V → V which is not surjective so that π2 = π.
This implies that π is a ‘projection’ (or a fancier word: idempotent). It takes
V and sends everything to a particular subspace (imπ), which it fixes.

Let’s restrict our attention to Hom(V, V ) again. Suppose we have a subspace
W of V . We claim that the set

V/W := {v +W : v ∈ V }

where v +W = {v + w : w ∈ W} has a vector space structure on it.
LEMMA. We can make V/W a vector space, withe the addition operation

(v +W ) + (v′ +W ) = (v + v′) +W.

Proof. Not hard, just verify the axioms. �

LEMMA. We have dimV/W = dimV − dimW .

Proof. A bit trickier. If (w1, . . . , wm) is a basis for W , we can extend to a basis
of V by adding v1, . . . , vn−m.

Under the map V → V/W , this becomes (v1 +W, . . . , vn−m +W ). This will
still be spanning, since it was spanning before. Suppose that∑

i

ci(vi +W ) = W.
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This is equivalent to (
∑

i civi) + W = W , or
∑

i civi ∈ W . Then in V , we
obtain ∑

i

civi −
∑
j

cjwj = 0

and by linear independence in V all of the coefficients are 0. Thus, we get
linear independence. This is then a basis, so the dimension is n−m. �

THEOREM. Let T be a linear map. Then

V/ kerT ' imT.

Proof. We already have a map

T : V → imT ⊂ W.

However, it does not have the right domain. Instead, consider the following
diagram:

V

V/ kerT imT

π
T

T

Here, the map T sends v + kerT 7→ T (v). We claim that this is both well-
defined and is actually an isomorphism.

To be well-defined, we need to show that if v + kerT = w + kerT then
T (v) = T (w). Note that v + kerT = w + kerT implies v − w ∈ kerT so

T (v)− T (w) = T (v − w) = 0

and hence they are equal. Thus, T is well-defined. It is easily checked to be
linear.

Next, we claim it is bijective. Letw ∈ imT . Thenw = T (v), and T (v+kerT ) =
T (v) = w. Thus, T is surjective. Suppose that T (v + kerT ) = T (w + kerT ).
Then T (v) = T (w), so T (v−w) = 0 and t := v−w ∈ kerT . But then w+t = v,
so w+kerT ⊂ v+kerT . Similarly we get the other inclusion, so T is injective.
It is then bijective, and hence an isomorphism. �

THEOREM. We have dimV = dim kerT + dim imT .

This makes the intuitive explanation from before precise, telling us that the
number of ‘degrees of freedom’ in the kernel are balanced out by those in
the image.
LEMMA. A map T ∈ Hom(V, V ) is an isomorphism if and only if it is surjective.
The same is true for being injective.
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Proof. A linear map is injective if and only if dim kerT = 0, and surjective
if and only if dim imT = dimV . Rank nullity shows that these conditions
imply each other, and T is an isomorphism if and only if both are true. �

LEMMA. Let dimV = n, dimW = m < n. Then if T : V → W is a linear map,
we have dim kerT ≥ n−m.

Proof. We have dim kerT + dim imT = n. But dim imT ≤ m, so dim kerT ≥
n−m. �

DEFINITION. The column rank of a matrix is the dimension of the subspace
spanned by its columns. The row rank is the dimension of the subspace
spanned by its rows.

LEMMA. The column rank of a matrix A is dim imA.

Proof. If w ∈ imA, we have w = Av for some v ∈ V . If v =
∑

i viei, we get

Av =
∑
i

viAei,

and since Aei are the columns of A we see w is in the span. Conversely,
every vector spanned by {Aei} is in the image, since

∑
i ciAei = A(

∑
i ciei) ∈

imA. �

THEOREM (Warning: Tricky proof!). The row rank of a matrix is the same as the
column rank.

Proof. The matrix A : V → W will be a dimW × dimV matrix. Recall that if
V is a vector space, Hom(V,R) is also a vector space and we denote this by
V ∗. We can ‘dualize’ the situation A : V → W as follows:

V W Hom(W,R) Hom(V,R)
A A∗

We define A∗ as sending a map ϕ : W → R to ϕA : V → W → R (this
is matrix multiplication). How does this relate to the row rank? Well, we
can write down ϕ as a 1× dimW matrix since it sends W → R. Let’s write
down a matrix for A∗. It is a dimV × dimW matrix, since the input space
has dimension dimW and the output space dimension dimV . It sends e∗i to
e∗iA, a 1× dimV vector which is the ith row of A. Thus, as a map W ∗ → V ∗,
the columns of A∗ have become the rows! By our lemma, dim imA∗ is then
the row rank. Hence, the statement that row rank equals column rank is that
(imA)∗ ' imA∗.

With this result in hand, we are nearly there. Given A : V → W , this is also
a surjective map V → imA. Dualizing gives A∗ : (imA)∗ → V ∗. The kernel
is now trivial. This is because A∗ϕ = ϕA = 0 implies ϕ is 0 on its entire
domain, and hence is the zero map. The rank-nullity theorem gives us an
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isomorphism
(imA)∗

kerA∗|(imA)∗
' imA∗

but the kernel is just {0} so we get (imA)∗ ' imA∗, �

EXAMPLE. Let’s go through an entire example and verify that each of the
above theorems actually makes sense. Let V = R3, and consider a matrix
projecting onto the plane x+ y + z = 0. We will pick the matrix Π sending ~x
to

Π(~x) = ~x− ~x · (1, 1, 1)

3
(1, 1, 1).

Geometrically, this is the orthogonal projection onto the plane. If ~x is in the
plane, then the extra term goes away because the dot product with (1, 1, 1)
is zero and so ~x is fixed. Otherwise, taking the dot product of the result
with (1, 1, 1) gives us zero and hence the result is in the plane. It is not too
hard to check that this is also a linear map (we need to check: Π(c~x) = cΠ(~x),
Π(~x+ ~y) = Π(~x) + Π(~y)).

Let’s write down the matrix. We get

Π =

1 0 0
0 1 0
0 0 1

− 1

3

1 1 1
1 1 1
1 1 1

 .
Because im Π is the plane x + y + z = 0, the dimension of the image is
2. We know the kernel should be 〈(1, 1, 1)〉, but we can do it algebraically.
For (x, y, z) to be in the kernel, we need 2x − y − z = 0,−x + 2y − z =
0,−x−y+2z = 0. Subtracting the second equation from the first, 3x−3y = 0
so x = y. Similarly, y = z and so x = y = z - this works as a solution, so all
solutions are (x, y, z) = (c, c, c).

We have dimV = 3 and so rank nullity holds: 3 = 2 + 1. Now let’s consider
what the quotient space V/ ker Π looks like. We can visualize it as a vector
space where the individual vectors are now lines through the plane x+y+z =
0 that are perpendicular to the plane. We add two lines by adding all pairs
of vectors on the lines and writing down a new line as the set of possible
sums. It is uniquely identified by using representatives in im Π and adding
these in the subspace im Π will be the same as adding the lines.
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LECTURE 5: THE DETERMINANT

Let T : Rn → Rn be a linear map. Given a region Ω ⊂ Rn, we have

volT (Ω) = C vol Ω.

Why is this the case? Imagine making Ω out of very small hypercubes.
Note that T affects a cube’s shape in the same way, no matter where it is
placed in Rn. This is because if the cube is centered at v, its vertices are
{v + vS : S ⊂ {1, . . . , n}} so that vS has 1 as an entry on elements of S and 0
otherwise. Applying T , by linearity we get a cube at T (v) but the vertices
are {T (v) + T (vS)} - relative to T (v), this is the same for a cube anywhere!
Hence, the volume of each of these cubes making up Ω gets scaled by some
constant C. Touching cubes remain touching, so applying T to our mass of
cubes gives us a mass of touching deformed cubes, each scaled in volume by
C. Hence, vol Ω scales by C. A picture of this is shown below:

Ω
T

FIGURE 1. Applying T to a blob Ω.

This constant C should be independent of basis, because it is a geometric
fact. You might have already seen formulas like

det

(
a b
c d

)
= ad− bc,

or some big expressions for larger matrices. Taking into account signed
volume, these tell us the constant C. We call this number the determinant of
T . We can actually write down an explicit formula.
DEFINITION. A permutation σ is a bijective map {1, 2, . . . , n} → {1, 2, . . . , n}.
Here, bijective means for each iwe can find σ(j) = i, and also that σ(i) 6= σ(j)
if i 6= j.

DEFINITION. The symmetric group Sn is the set of all permutations {1, 2, . . . , n} →
{1, 2, . . . , n}. Because permutations are functions, we can compose the func-
tions to get extra structure on this set. This is why we call it a ‘group’.

DEFINITION. We have a map sign : Sn → {±1}, which sends

σ 7→ (−1)N(σ)

where N(σ) is the number of inversions of σ (i.e. pairs (i, j) where i < j but
σ(i) > σ(j)).
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EXAMPLE. Consider the permutation in S3 sending 1 7→ 1, 2 7→ 3, 3 7→ 2.
This has 1 inversion, and hence sign −1.

We can now state the usual definition of the determinant for the matrix of a
map M ∈ Hom(V,W ), which is given by

detM =
∑
σ∈Sn

sign(σ)
∏
i≤n

Mi,σ(i).

At this point is seems like magic, but this number is actually the same for
all matrix representations of our linear map. It is intrinsic to the linear map,
and actually has nothing to do with a given basis.

This allows us to calculate it, but why this formula? Where does it come
from? Let’s start from a geometric perspective in Rn, and carefully work our
way up to this formula.

Matrix multiplication corresponds to composition of the respective linear
maps. If we view these as scaling space, what this means is that the matrix
AB scales byB and then byA, making it clear that the determinant should be
multiplicative. Just follow what happens to S : S 7→ B(S) = S ′, S ′ 7→ A(S ′).
Because the determinant is the scaling fact for *any* subset, we see that

vol(S ′) = |det(B)|vol(S) and vol(A(S ′)) = |det(A)|vol(S ′) = |det(A)det(B)|vol(S).

This is probably the best way to understand what a determinant means
because you can get a visual picture and it helps you to understand matrix
multiplication as repeated scaling.

How do we calculate the determinant? Well, it suffices to find out how it
stretches a unit cube by our observations above. The idea is to turn the
volume parallelepiped into an algebraic object which represents the volume.
In this case, if the parallelepiped is defined by the vectors v1, . . . , vn we will
denote its volume by v1∧v2∧ . . .∧vn. We can make statements about relative
volume, such as

v1 ∧ v2 ∧ . . . ∧ vn = Cv′1 ∧ v′2 ∧ . . . ∧ v′n
This would mean that the parallelepiped defined by the v′i has C times the
volume of the parallelepiped defined by the vi. We can write down the
following rules about these volumes:

◦ (1) (Additivity) . . . ∧ v + w ∧ . . . = . . . ∧ v ∧ . . .+ . . . ∧ w ∧ . . .

◦ (2) (R-Linearity) . . . ∧ Cvi ∧ . . . ∧ vj ∧ . . . = . . . ∧ vi ∧ . . . ∧ Cvj ∧ . . .

◦ (3) (Alternating). . . ∧ v ∧ . . . ∧ v ∧ . . . = 0.

◦ (4) (Anticommutative) Swapping any two vectors inverts the sign.
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From the perspective of representing volume, each of these relations has
a very specific meaning. The first and second properties must be true be-
cause the signed volume is the volume of the parallelepiped P spanned by
v1, v2, . . . , vn−1 multiplied by length of the projection of vn onto the n − 1
dimensional hyperplane through P . For example, in R2 this is just base
times height. The projection is a linear map, which is where relations (1) and
(2) come from. This illustrated below:

v1 ∧ w

v2 ∧ w

v2

v1

w

=

v = v1 + v2

w

v ∧ w

2

(
v ∧ w

)v

w

=

2v

w

2v ∧ w

FIGURE 2. Axioms (1) and (2).

Here, we can see that the area is given by base× height. The base is constant,
so we look only at the height (i.e. the length of the projection onto w). The
sum of the two heights of v1, v2 is the height of v, and hence the sum of the
areas of the red and blue parallelograms equals the area of the purple one.

The next relation, (3), simply eliminates degenerate parallelepipeds. The
final relation, (4), introduces the notion of a signed volume that reflects the
orientation of the parallelepiped. Let’s look at the case of v ∧ w versus w ∧ v.
On the surface, these would appear to define the same parallelogram. If we
number the vector based on which appears first, the linear map Φ sending
w 7→ v, v 7→ w goes between the two cases.

v ∧ w

v (1)

w (2)

Φ
w ∧ v

v (2)

w (1)
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In the case of a square, we can view Φ as just flipping the parallelogram
(hence the name ‘orientation’!). If we consider a directed loop γ within the
parallelogram, applying Φ will actually reverse the direction! Thus, these
two parallelograms have different orientations. To reflect the direction swap,
we set v ∧ w = −w ∧ v. 2 This is illustrated below. Note that (4) implies (3),
but we include both for the geometric interpretation.

It turns out these are enough to define the determinant. Since if we set Ω to
be the parallelipiped defined by v1, . . . , vn we have vol(TΩ) = detT vol(Ω),
We have already explained why it should be the case that

Tv1 ∧ Tv2 ∧ . . . ∧ Tvn
v1 ∧ v2 ∧ . . . ∧ vn

= detT.

Using the rules (1)-(4), we can compute the top quantity when the vi are the
standard basis in Rn.

Pick a matrix M for T . This becomes a matter of simplifying M(e1)∧M(e2)∧
. . . ∧M(en) into the form Ce1 ∧ e2 ∧ . . . ∧ en. We can expand this as

M(e1) ∧M(e2) ∧ . . . ∧M(en) =
∑
j

M1jej ∧
∑
j

M2jej ∧ . . . ∧
∑
j

Mnjej

and we can then simplify using the relations for Λn(V ). The first and second
are essentially the distributive property, and so we can proceed like we are
multiplying and implement the other relations later. Since we cannot have
repeated vectors (property (3)), every combination we pick upon expanding
that is not sent to zero must be a permutation. Hence, upon expanding we
will get∑
j

M1jej∧
∑
j

M2jej∧. . .∧
∑
j

Mnjej =
∑
σ∈Sn

(
n∏
i=1

Miσ(i)

)
eσ(1) ∧ eσ(2) ∧ . . . ∧ eσ(n).

Noting that eσ(1) ∧ eσ(2) ∧ . . . ∧ eσ(n) = sign(σ)e1 ∧ e2 ∧ . . . ∧ en by the an-
ticommutative property, we immediately obtain the Liebniz formula for
the determinant. From this formula, it is easy to derive most of the other
common methods for computing the determinant.

Let’s go back to the geometric picture in Rn and think about what the
determinant actually tells us. Suppose T ∈ Hom(V, V ) has detT = 0. This
means it sends every Ω ⊂ Rn to a subset of volume zero. It is certainly not
invertible in this case, since then there would exist a linear map sending
T (Ω) of volume 0 to vol Ω > 0. But this doesn’t exist, since 0 × C = 0 and
linear maps scale volumes. Thus, we should expect the following:

2In general, this idea of orientation is captured by an idea called local homology. This
is probably not accessible right now, but the first step to learning something is knowing it
exists!
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THEOREM. Let T ∈ Hom(V, V ). Then T is an isomorphism if and only if detT 6=
0.

Proof. We know the only if part already, but we will formalize it. Formalizing
the above argument, suppose detT = 0. Then since T−1T = id and det id = 1,
we would obtain

det(T−1) det(T ) = 1

but then 0 would have an inverse, which is impossible. Hence, we can only
have an inverse if detT 6= 0.

Next, suppose that detT 6= 0. We claim that T is surjective. Noting that imT
is a subspace of V , if it was not the entire space then T would send e1, . . . , en
to a set of n vectors in a subspace W of dimension at most n− 1. But then
they are not linearly independent. Considering the map in Λn(V )

v1 ∧ v2 ∧ . . . ∧ vn 7→ T (v1) ∧ T (v2) ∧ . . . ∧ T (vn),

setting vi = ei we get the result

e1 ∧ e2 ∧ . . . ∧ en−1 ∧
∑
i≤n−1

ciei.

Axiom (3) tells us this is zero. Hence detT = 0, a contradiction. Thus,
imT = V . By the results of the previous section, it is an isomorphism. �

In fact, we can explicitly give the inverse in terms of the cofactor matrix:

T−1 =
1

detT
[detCij]ij,

where Cij is the determinant of T when we remove the ith row and jth
column.
LEMMA. A left inverse is also a right inverse. That is, AB = I if and only if
BA = I .

Proof. We will show AB = I implies BA = I . Note that det(AB) = 1, so
det(A), det(B) are both nonzero. Thus, both A and B are isomorphisms by
the theorem above.

In particular, B(AB)B−1 = BB−1 = I , but B(AB)B−1 = BA so we are
done. �
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LECTURE 6: EIGENVALUES AND EIGENVECTORS

Last time, we defined the determinant and proved the Liebnitz formula

detM =
∑
σ∈Sn

sign(σ)
∏
i≤n

Miσ(i).

There are some clear advantages to understanding determinants as we
showed last time. For example, it allows us to determine whether or not a
linear operator is invertible.

It also lets us solve a different problem. Given a linear map T , there are
many different sorts of bases we could pick. However, we usually want to
pick the easiest possible basis, so computations are easy.

The easiest possible thing we could expect is to get a matrix in ‘diagonal’
form

T =


λ1

λ2

. . .
λn

 .
This form makes every sort of analysis easy - it’s easy to multiply, it’s
easy to see that it’s invertible, etc. Well, in such a basis {v1, . . . vn}, by our
construction of the matrix we would need Tvi = λivi. How do we find these
vectors and numbers? Well, consider the linear map

Ti := T − λiid.
On the subspace W spanned by vi, this is zero. Hence, kerT 6= 0 and T is not
an isomorphism. Then we have

det(T − λiid) = 0.

We can set vi to be some vector in the kernel! Hence, the task of determining
the λi (if they exist) is equivalent to finding λ so that det(T − λid) = 0. Using
the Liebnitz formula, this is a degree n polynomial.
DEFINITION. An eigenvalue is a solution λ to det(T − λid) = 0.

DEFINITION. An eigenvector for an eigenvalue λ is a vector v in ker(T −λid).
The set of all eigenvectors of λ is the eigenspace.

LEMMA. detT is the product of the eigenvalues of T .

Proof. Practically by definition: pT (0) = det(T ). The constant term in a
polynomial is the product of its roots. The roots of pT are the eigenvalues. �

THEOREM. Suppose det(T − λid) has n distinct nonzero roots over k. Then T can
be written as a diagonal matrix like above. We call T diagonalizable, and the basis is
known as the eigenbasis.
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Proof. The roots are nonzero, so in particular det(T ) 6= 0 so it is an isomor-
phism. We have n distinct λi so that det(T − λiid) = 0. Each is not an
isomorphism, so dim ker(T − λiid) > 0. Hence, we can pick some vi in the
kernel. These vectors must be distinct, since λi are distinct. Additionally, if∑

i civi = 0, upon applying T we get∑
i

ciλivi = 0.

But also note that
∑

i ciλnvi = 0, so taking the difference of the two we get∑
i<n (λi − λn)vi = 0. Using induction, we see that c1 = 0. Plugging this back

in and using the same argument, c2 = 0 and so on until we see all ci are zero.
Hence, the vi are linearly independent. They also span because there are n of
them, so they are in fact a basis. In this basis we get a matrix of the desired
form.

Note that we also get dim ker(T − λiid) = 1 from this explicit representation,
so we can only pick the vi up to scalars. �

This polynomial det(T−λid) is important, and it is known as the characteristic
polynomial. We denote it by pT (λ) := det(T − λid). Because det depends only
on T as a linear operator, pT depends only on T as a linear operator. This
means it is invariant under basis change.
DEFINITION. The trace tr(T ) is the coefficient of λn−1 in pT . Equivalently, it
is the sum of the eigenvalues. Since pT is invariant under basis change, tr(T )
is as well.

LEMMA. We have
tr(A+B) = tr(A) + tr(B).

Proof. Pick matrices for A and B. We claim trT is the sum of the diagonal
entries. To see this, consider det(A − λid) and the Liebnitz formula. To
contribute to the λn−1 term, the permutation σ needs to be the identity.
Otherwise, you can only get at most λn−2 since a permutation fixing ≥ n− 1
elements is the identity. This term is

∏
i(Aii − λ), and so the coefficient of

λn−1 is
∑

iAii. The claim is easy from here, since the trace is independent of
the matrix representation of an operator. �

EXAMPLE. Remember that C is a vector space over R. Picking the basis
{1, i}, we write a+ bi as the following matrix:

a+ bi =

(
a −b
b a

)
Let’s make a few observations.

◦ We have detR(z) = |z|2.

◦ We have z + z = trRz
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◦ Multiplication of complex numbers corresponds to multiplying their
matrices (check this!).

In other words, we can say everything we need about complex numbers by
representing them as matrices over R. They are not really imaginary after
all!

EXAMPLE. Consider the matrix

T =

1 4 1
0 6 4
0 0 1

 .
Let’s find all of the eigenvalues. We can immediately spot that 1 is an
eigenvalue, since Te1 = e1. Since the sum of the eigenvalues is 8 and the
product is 6, for the other two eigenvalues we get

λ2 + λ3 = 7, λ2λ3 = 6.

That is, they are roots of x2 − 7x+ 6. The roots of this are 1 and 6. Thus, we
get pT (λ) = (λ− 1)2(λ− 6).

We can also do this another way. Consider det(T − λid). For every σ ∈ Sn,
we get a zero in the product unless σ = id. Hence, det(T −λid) =

∏
i(λ−Tii),

which matches what we got.

EXAMPLE. Consider the matrix

T =

[
1 2
3 4

]
.

Let’s find the eigenvalues as well as the eigenvectors. We have

det(T − λid) = det

[
1− λ 2

3 4− λ

]
= (1− λ)(4− λ)− 6.

Solving, we get λ = 5±
√

33
2

. Explicitly solving T (x, y) = λ(x, y), we get

v1 =

(
1

6
(−3 +

√
33), 1

)
, v2 =

(
1

6
(−3−

√
33), 1

)
as our eigenvectors. Then span of these gives the eigenspaces. Written in
this basis, T is diagonal.

EXAMPLE. The matrix

T =

[
1 0
1 1

]
cannot be made diagonal. This doesn’t contradiction our theorem, because if
you use the method above you’ll see the eigenvalues are not distinct.

THEOREM (Cayley-Hamilton). Let k = C, T ∈ Hom(V, V ). Then pT (T ) = 0,
where 0 is the zero matrix.
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Proof. Suppose that T can be made diagonal. Then

pT (T ) =


pT (λ1)

pT (λ2)
. . .

pT (λn)

 = 0.

But this isn’t possible for every matrix - just look at the example above!
What is true is that given a random matrix, its characteristic polynomial
will probably have distinct roots (a random polynomial almost certainly
has distinct roots) and hence T will be diagonalizable. Hence, the theorem
holds for almost all matrices. Noting that Hom(V, V ) is a C-vector space,
if we identify it with Cn the diagonalizable matrices form a ‘dense’ subset,
meaning there is a diagonalizable matrix abritrarily close to any given matrix.

Now the map
ϕ : T 7→ pT (T )

is a differentiable map from Hom(V, V )) to itself. Hence, it is a continuous
map, and is 0 on a dense subset of W . Given a matrix T , for any ε > 0 there
exists a ball of radius δ so that |T − T ′| < δ and |ϕ(T )− ϕ(T ′)| = |ϕ(T )| < ε.
Note that | · | here is the norm on Cn, |v| := v · v. Hence, ϕ(T ) is arbitrarily
close to 0 and must be 0. �

This works over R, since R ⊂ C.
EXAMPLE. We can use this to find eigenvectors! Take the 3× 3 matrix from
the previous example with characteristic polynomial pT (λ) = (λ− 1)2(λ− 6).
By Cayley-Hamilton, for any v ∈ R3 we know that

(T − I)2(T − 6I)v = 0,

as the result is the zero matrix. Suppose we want to find the eigenspace for
6. Given any v ∈ V , we know that (T − I)2v ∈ ker(T − 6I), or that it is in
the desired eigenspace. So if we pick a vector at random, this sends us to
the eigenspace we want. Since it is one dimensional, we have completely
determined it.

In general, if T has distinct eigenvalues the linear map Π : V → ker(T − λiI)
given by

Π =
∏
j 6=i

T − λjI
λi − λj

is a projection from V to the 1-dimensional eigenspace for λi.

EXAMPLE. There is a simple formula for the inverse of a 2× 2 matrix, pro-
vided it exists: [

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.
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You can check this by multiplying, but we can actually derive it in a pain-free
way if we use Cayley-Hamilton. Let A be our matrix. Then A2 − (trA)A +
(detA)I = 0. Then

1

detA

(
(trA)A− A2

)
= I.

Multiplying by A−1, we get A−1 = 1
detA

((trA)I − A).
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LECTURE 7: USES OF LINEAR ALGEBRA

We’ve seen some important theorems in linear algebra and a lot of linear
maps, but why do people care so much about linear algebra? To answer this
question, we need to see some ways that linear algebra can be incredibly
useful. This lecture will be all examples.
EXAMPLE. Consider a function f : R→ R. We can make a graph of it like
this:

x

f(x)

f(x) = 1
4x

ex

Tangent

At each point, we can draw a tangent line which tells us how fast f is
changing. If we were to zoom in on this point, we would see that the tangent
line approximates the curve really well around a point:

f(x) = 1
4x

ex

In fact, very close to the point of tangency the line and the function are
virtually indistinguishable. The line is a good linear approximation for the
function at a point. We call the set of slopes of all these lines the derivative
of a function. These lines are all of the best linear approximations of the
functions at each point. This is true for most ‘nice’ functions. If we treat the
point of tangency p as the origin, what this says is that f looks locally like
a linear function in Hom(R,R). These are 1× 1 matrices, representing the
maps x 7→ cx. The value c is the slope of the line.
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Now suppose we have a function f : Rn → R, which we will write as
f(x1, . . . , xn). Before, at a point we approximated with a line, but now we
need a (hyper)plane:

This is again saying the same thing - around the point of tangency p, the
function is very close to the plane. As before, the plane describes the rate of
change of f at the point p. If we pretend that p is the origin, we can again
phrase this in terms of linear maps. If we were to plot a linear map Rn → R
in the same way as we plot f , we would get a plane through the origin.
Hence, this is saying that around p the function f is approximated by some
linear map in Hom(Rn,R).

We can go a step further, but it becomes a bit trickier to draw pictures.
Assuming that for a nice function Rn → Rm the ’rate of change’ becomes
constant locally, we can approximate f at a point p ∈ Rn with a linear map
dfp ∈ Hom(Rn,Rm) so that f(p+ ~x) ≈ dfp(~x).

If you have seen multivariable calculus, you know this linear as the Jacobian
matrix. We can write it in terms of derivatives as

dfp =

[
∂fi
∂xj

]
ij

,

where f(~x) = (f1(~x), f2(~x), . . . , fn(~x)). These are incredibly useful because
they allow us to generalize the notion of a derivative, and also can be very
handy for changing variables in an integral of the form

I =

∫
Ω

f(x1, . . . , xn)dx1dx2 . . . dxn,

since we might be able to pick variables that make integration easier over
Ω ⊂ Rn.

EXAMPLE. A graph is a pair (V,E), where V is the set of vertices and E is
the set of edges (which connect two vertices). They might look something
like this:
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FIGURE 3. A complete graph

In the modern world, graphs are extremely useful as data structures and
any understanding we can gain about graphs on a large scale is invaluable.
Linear algebra actually allows us to do some of these things.

Let’s look at the first version of PageRank. Each node represents a website,
and the edges represent connections between them such as links. We want
to assign a vector v describing the ranks of each page, so that a higher rank
rage indicates that it is more important in the network.

Imagine walking from node to node, taking a random edge each time. It
makes sense that you would end up at important nodes like Wikipedia
more often than some random website. So, if we can measure the ”stable”
distribution of many random walkers along the graph, we can get some
sense of how important websites are.

At each node i, we assign probabilities pij of visiting node j along a random
link. Define the matrix

Σ := [pij]ij,

which we will call the random-walk matrix. Let v0 denote some random
distribution of random walkers living at each node, so that the sum of its
components is 1. Then Σv0 is the distribution after each walker picks a node,
and Σnv0 for n� 0 will reflect the distribution after a long time. The sum of
its components will remain 1.

Almost certainly, the eigenvalues of Σ will be distinct. If this is the case,
under the correct basis Σ is a diagonal matrix Σ = diag(λ1, . . . , λn). For Σn,
the largest eigenvalue will dominate. In particular, our result will go towards
a stable state which is the eigenvector of the largest eigenvalue. Normalizing
this so that it is a unit vector, we can use this to rank the important of
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each node. There exist fast algorithms to calculate eigenvectors, so this is
reasonable in practice even with a very large matrix.

EXAMPLE. Suppose we have some discrete function

x : Z→ C

which is periodic: that is, there exists some N so that x[n + N ] = x[n], so
really all the information about x is contained in x|[0,N−1]. This function could
be a lot of things, but here we will pretend it is some digital signal and we
want to retain important information about x while lowering the amount of
information we have to store. For example, we want to remember things
like peaks but maybe not a tiny bump.

Suppose our signal contains information about light. You’re probably aware
that light comes in different frequencies, which determine the color. But
when we get light from a source, it’s usually a lot of different frequencies of
light all mixed up. There is a nice basis for these functions in terms of waves.
In particular, we can use the basis functions xk[n] = e2πikn/N . If you’ve seen
complex numbers, basically what xk[n] does it rotate around a circle at faster
and faster paces. The parameter k describes the frequency. At our precision,
these are really all the frequencies we can make sense of. We want to write

x[n] =
∑
k

akxk[n].

Because these elements xk[n] form a basis, we can uniquely find the numbers
ak and figure out the frequencies that went into the signal.

This is tremendously useful! Here are just a few:

◦ Image compression: ignore unimportant frequencies, so that we store
fewer numbers but get roughly the same function.

◦ Removal of noise in images.

◦ Fast multiplication using about n log n log log n operations multiply
n-bit integers (need to use FFT algorithm).

◦ Solve PDEs.

◦ Spectral analysis.
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